
Design Considerations In Migrating an Obstetrics Clinical Record to the Web
David A. Berkowicz M.D. M.Sc. M.S., Henry C. Chueh M.D. M.S., and G. Octo Bamett M.D.

Laboratory of Computer Science
Massachusetts General Hospital, Boston, MA.

Recently the American College of Obstetricians and
Gynecologists (ACOG) embarked on an effort to
promote the development of nationally networked
obstetrical records. The Laboratory of Computer
Science (LCS) is collaborating with them to help
achieve this goal through the development ofa web-
based prototype of an electronic medical record
(EMR) which would allow the entry and display of
typical clinical informationfor the obstetric patient.
The process ofporting a stand alone application to
the web environment necessitated the development of
a robust software scheme that could exploit the
strengths of Web-based technologies and avoid some
ofthe drawbacks inherent in a stateless environment.

INTRODUCTION

Over the last three years, the Massachusetts General
Hospital (MGH) Obstetrics department has used a
computer-based record for prenatal care (OBEMR).
Through an initiative identified by the American
College of Obstetricians and Gynecologists (ACOG),
we have been involved in using this experience to
provide a demonstration of computer-based records
to ACOG membership around the nation.
The stated goals of the initiative are:
* Facilitate creation of a national awareness in

practicing obstetricians to the concept of an
interactive EMR which uses a controlled
vocabulary to standardize and simplify data
entry.

* Establish consistent standards for the minimal
information that each physician should gather
about a patient so that data sharing and analysis
can be performed between different institutions
or practices.

It was decided that providing a working sample of a
computer-based record to clinicians was a critical
factor in meeting the above goals. The existing
computer-based record used by the obstetric service
at the MGH was originally written as a two-tier client
server architecture with a graphical application
environment on the client' (Windows and ToolBook)
and a relational database server (Oracle7). It was not

realistic to distribute this software to all ACOG
members, and therefore a distinct subset of the
electronic record was selected for dissemination. A
Web-based internet solution was identified as the best
approach for this effort. In order to leverage the
existing work, the specifications of the web
application (OBEMR_WEB) required that it would
utilize the same relational data model used in the
production OBEMR, and that it would return and
present data using a similar visual user interface.
There are many features of a stand-alone application
that are difficult to duplicate with a set of HTML
pages. Many of these limitations have been
discovered in earlier Web-based efforts2'34. A stand-
alone application can leverage the state connection it
establishes between the client and the server to send
and retrieve data in a seemingly seamless manner,
thereby simplifying data persistence and data 'flow-
through'. In addition, the editing or entry of
information with data validation is a well defined
task in this environment. The user interface is easily
customizable and keystrokes can be captured to aid
in navigation and data entry.
HTML does provide many graphic elements but the
interactions between these elements are still
relatively static and the dynamic creation of visible
components on an existing page is still beyond the
scope of today's browsers. The Java language does
provide many powerful tools to construct robust user
interfaces, but does not approach the ease of
development and graphic power ofHTML.
An important consideration in design was the
targeting of the web program to physicians with a
wide range of available resources. A Java based
application would take prohibitively long to
download over a slow modem and will not run on a
16-bit computer.
Because of these constraints, we designed a
component based software architecture that could be
delivered over the web through a set ofHTML pages,
and that could mimic a stand-alone application
though the interaction of Javascript with a HTML
browser.

1091-8280/97/$5.00 0 1997 AMIA, Inc. 754

7KW&bw.

rob Rskm

oawbd

/I

Figure 1. Multitiered Software Architecture.
The patient database is accessed through SQL statements resident in Cold Fusion scripts. The results ofthe queries
are either returned as combined Javascript display functions and data (i), or the raw data is 'piped' through
Javascript to form data objects. These clinical data objects can either act as repositories whose contents are
retrievable by other HTML pages containing display functions (iii), or the data can be written to the screen by
routines contained in the repositories themselves (ii).

METHODS

Overall Design:
The initial design of the OBEMR_WEB consisted of
three main components or tiers: the user interface on
the web browser, the Web server and its associated
common gateway interface (CGI) scripts, and patient
data resident in a relational database. However, to
duplicate the functionality of a stand-alone
application a fourth tier, a 'virtual' layer, was
constructed (Figure 1). This was composed of sets of
Javascript objects and routines and was designed to
provide a local repository of persistent data objects.

Implementation:
The front end or user interface was designed to
accommodate users with low connection speeds as
well as users with low computer skills, for e.g.:
complex graphics were avoided, and no Java objects
were embedded in the pages. However, due to the
complex design and functionality of the pages HTML
frames and tables were used in the layout. Javascript
was used to perform on-screen calculations and to
guide data input and validation. The layouts of the
pages followed the design of the OBEMR at the
MGH and were made as simple as possible to use.
Wherever possible selection lists were used to control
vocabulary input.

The middle layer, represented by Cold Fusion scripts
and Javascript objects, consisted of combinations of
output templates and SQL statements. Each output
template was paired with a set of database queries.
This arrangement provided a simple yet powerful
way to create multiple views of a database query and
was an effective way to reuse query and display
components. The queries used for the OBEMR_WEB
were the same as those used for the OBEMR and
were directed against actual patient data that had
been scrubbed of all identifying information. This
patient data is resident in a set of tables in an Oracle
relational database.

Data Flow and Persistence:
The requirement for data persistence and data flow
was addressed by the creation of a 'virtual' fourth
layer. This was formed by a dynamic hierarchy of
components with different scopes and persistence.
The duration of the most persistent data objects was
determined by patient selection, i.e.: when a different
patient is selected all the data specific to that patient
is replaced by the newly selected patient's
information.

755

cu bwf

In general one of the following schemes was used to
ensure data persistence and flow through (Figure 1):
i the data arrived bundled with the display

methods, or
ii the data was passed up to a parent object which

contained the methods to display the
information, or

iii only the display methods were loaded and the
needed data was retrieved from the persistent
data repository.

Alterations or additions to data resulted in the
propagation of the changes to the data repository.
This persistent data repository was accessible to all
visual elements and therefore those components
loaded subsequent to the changes displayed the new
information. The combination of these schemes
allowed the sharing of data between different layouts
and allowed each layout to provide its own specific
display of the same data.

Clinical Data Object Creation:
Central to this web-based application was the
creation of data objects from the patient information
returned by database queries. The Cold Fusion CGI
returns data as a set of variables output in a loop
between specialized output tags. These variables can
be captured by Javascript arrays, or objects, and then
manipulated in the browser environment through the
use of display functions that write HTML directly to
the browser window. The same output function can
be used to display any comparable Javascript data
object, similarly the data object can be displayed in a
different format as needed.

Component Architecture:
Framesets in HTML provide a useful mechanism to
'swap' pages into and out of a composite display
(Figure 2). These pages can contain data, code, or
both and are therefore an efficient means to transfer
blocks or modules into and out of the application.
The data contained in a page is accessible to all the
other pages in the frameset for the duration of the
page's display. A single frame in the primary parent
frameset was designated to be the data repository
whose contents were only flushed when a new patient
was selected.

RESULTS

The OBEMR_WEB consists of approximately twenty
display pages whose design and functionality closely
match that of the stand-alone application (Figure 3).
It performs very swiftly, as much of the processing is
accomplished locally on the client. Most screens

Parent Frame

Frameaets

Pages
o

L

Figure 2. Data Persistence.
A persistent data repository was established as a set
of Javascript objects in one frame of the parent
frameset. This frame was only replaced when a new
patient was selected and therefore the data's duration
matched that of the current patient. The other frames
in the parent frameset were host to set of secondary
framesets each ofwhich contained either dynamically
generated HTML pages (dotted box), or HTML
encoded pages containing Javascript functions (solid
boxes). All the pages in any frameset have access to
the data stored in the persistent page.

require no more than several seconds to retrieve,
even over slow modem lines. The bulk of the data is
retrieved at the time of patient selection and therefore
most of the subsequent transactions occur between
the displayed page and the local repository. A certain
amount of load balancing can be achieved by
distributing the calls to the database between
different display framesets.
The program is robust and can operate independent
of the network once all the data is loaded. The Web-
based application was rapidly developed in four
months mostly due to the reuse of components from
the stand-alone application. It utilizes the same data
model as the production application and therefore all
the SQL statements which defined data retrieval
could be used unchanged.
The overall visual design of the Web application
closely matches that of the clinical workstation
currently in use. The physician is presented with a list
of patients whose data they may access. When a
patient is selected a series of queries are executed.
The data returned from these initial queries are stored
as clinical data objects in Javascript. When data is
reviewed or edited the 'page' performing these
actions contains instructions on how to validate the
entered data. Also, if data is altered or added then the
changes are propagated to the data repository and
retained for later submission to the database.

756

Figure 3.
This screen capture shows a page containing a sample of data. The window consists ofmany embedded framesets
and frames, some ofwhich were created with Javascript functions. This particular page shows flowsheet data
summarizing the patient's outpatient visit history. The lower half of the screen contains the entry form where new
data can be entered. The new data appears immediately in the upper half of the window once the user 'ADDs' the
entry. If the user navigates to another page via the tabs at the top of the screen the new data entered will still be
present in the flowsheet.

ACOG members will only be able to reach the site
via the college's Web pages, which have restricted
access. To facilitate feedback, there is an assessment
form available for all users to record their
impressions and comments.

DISCUSSION

The aim of the ACOG project is to present an EMR
to obstetricians and gynecologists nationwide. The
specifications of the project required the user
interface to follow the design of an existing stand-
alone system presently in use at the MGH. This
included input control via pick lists, data persistence,
and data flow from one screen to another.

Technology:
The most immediate and intractable obstacle in
mimicking a stand-alone application is the stateless
nature of the Web which underlies the static nature of
displayed pages. Present technologies like Java,
ActiveX, and Javascript provide differing solutions to

overcome this limitation. None of these provide a
complete solution.
However, Javascript is supported by both major
browsers (Netscape and Internet Explorer), although
JScript (Microsoft) does have some differences to the
Netscape version it is possible to write browser
independent code. Our work has shown that it is
possible to maintain an object model with Javascript
and thereby create reusable components. In
combination with framesets this property can be
exploited to give the illusion of data persistence.

Data Persistence:
Data persistence on the web is difficult to accomplish
as infonnation contained on a HTML page is
inaccessible once that page is unloaded. Therefore
data entered by a physician on a screen is lost to the
system once that screen is replaced. This makes the
flow of updated information from one screen to
another very difficult. One approach to this problem
requires the server database to be updated with each
alteration in the patient record. The flow of data can
then be achieved through repeated database querying.

757

This method has many drawbacks including the
overhead inherent in frequent database updates and
queries as well as the time needed for data
transmission over the network.
We approached this problem by designing a
component based software framework that included a
virtual fourth layer written in Javascript. This virtual
layer was composed of a hierarchy of Javascript
objects and functions. The script code was distributed
over a number of pages, some of which were
persistent for the duration of the patient selection.
Other code snippets were contained in pages that
loaded in and out as needed by the user. These
components usually contained routines controlling
the appearance ofthe page, or objects containing data
that did not allow editing.

Specific Audience:
The OBEMR uses a controlled vocabulary to
describe most of the interactions between patient and
physician. This has the result of standardizing the
information gathered on any encounter as well as
simplifying data entry.
The design of an EMR that is targeted to a specific
audience provides distinct opportunities. For
example, the system contains a prenatal questionnaire
with sets of selection lists appropriate for the
specialty. In this way a very granular controlled
vocabulary can be implemented and an information
rich environment created. The Web-based approach
is well-suited for this type of layout and requires very
little overhead. Another advantage to creating an
EMR for a specific audience is that the physicians
will be presented with a subject with which they are
very familiar and therefore even the most computer
naive should feel comfortable.
This project also explored the notion that a sample
EMR can be used as an education device over the
Web. The questions contained in the EMR
framework provide physicians with a base set of
inquiries with which to gather patient information.
These questions implicitly define a core data-set and
provide guidelines for collecting this information.
Ultimately, this can lead to the definition of 'a
standard of care' in a given medical specialty.

Future directions:
The OBEMR should be viewed as one of a set of
modules that will eventually form the patient's EMR.
Communication between these modules will be very
important as will be the ability to retrieve data from
many sources. The reusable component architecture
and expandability of the application can be used to
form other modules and will allow for the rapid

interchange of elements as they become
available/needed. Non-visual Java applets will
eventually replace the Javascript because they can be
multi-threaded and can establish state connections
with different services.
While there is no universal standard for the content
format and the transmission protocol used in the
dissemination of clinical data between different
medical record systems, translators of some type are
going to be needed to convert data from one format
to another.

CONCLUSION

The development of a complex 'application' for the
WWW presents many obstacles as well as
advantages. Able to overcome using Javascript and a
local object model. The powerful presentation
abilities ofHTML and the rapid development/display
cycle make this a compelling development
environment. In. addition, Web-based architectures
allow existing middle layer and server side services
to be reused, shortening development cycles.

Acknowledgements

This work was supported in part by the National
Library of Medicine Training Grant NLM LM 07092
and NLM research grant LN05854. We acknowledge
the support of Judith Piggins, Dyan Blewett, Michael
F. Greene M.D., Frederic Frigoletto M.D. and the
ACOG.

REFERENCES
1. Chueh, C., Greene, M.F., Piggins, J.L., Dupont,

H.M., and Barnett, G.O. A Clinical Workstation
for Obstetrics Replaces the Paper Record and
MGH. In Hripcsak, G. ed., AMIA, Spring
Congress, pp. 30.

2. Sittig, D.F., Kuperman, G.J., Teich, J.M., et al.
WWW-based Interfaces to Clinical Information
Systems: The State of the Art. In Cimino J.J, ed.,
JAMIA, Symp. Sup, pp. 694-698.

3. Cimino, J.J., Socratous, S.A. Just Tell Me What
You Want!: The Promise and Perils of Rapid
Prototyping with the World Wide Web. In
Cimino J.J, ed., JAMIA, Symp. Sup, pp. 719-
723.

4. Kittredge, R.L., Estey, G., Pappas, J.J., et al.
Implementing a Web-Based Clinical Information
System Using EMR Middle-Layer Services. In
Cimino J.J, ed., JAMIA, Symp. Sup, pp. 628-
632.

758

